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Abstract

This document contains a concise introduction to the computational method
developed by the author with his collaborators for automatic classification
of global dynamics in multi-parameter dynamical systems with discrete or
continuous time.

1 Introduction

A dynamical system is a mathematical concept for describing an object varying
in time, using a fixed rule that depends on the current state of the object (and not
on its past). Dynamical systems can be used to describe a variety of phenomena,
such as the growth of a population or spreading of an infectious disease.

In this concise note, I am going to introduce a framework for automatic classi-
fication of global dynamics in a dynamical system depending on a few parameters
(such as fertility rates or disease transmission rates). A set-oriented topological
approach is used, based on Conley’s idea of a Morse decomposition (see [5]),
combined with rigorous numerics, graph algorithms, and computational algebraic
topology. This approach allows to effectively compute outer estimates of all the
recurrent dynamical structures encountered in the system (such as equilibria or
periodic solutions), as perceived at a prescribed resolution. It thus provides an au-
tomatic computational method for concise and comprehensive classification of all
the dynamical phenomena found across the given parameter ranges. The method
is mathematically rigorous (a.k.a. computer-assisted proof), and has a potential
for wide applicability thanks to the mild assumptions on the system.
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The method was introduced in [1], where an application to a 2-dimensional
discrete-time dynamical system is thoroughly discussed. Additional description
of the method and other applications are provided in [2]. This method was applied
to some nonlinear population models [1, 2], to a population model with harvest-
ing [8], to a theoretical physics model of plasma confinement transitions [17], to
an epidemic model of infectious disease spreading in two locations connected by
transportation [7], and some other dynamical systems [2]. In each of the applica-
tions, the method provided additional information that complemented analytical
results and numerical simulations.

2 Preliminaries

Let T = Z or T = R. Let ϕ : Rn × T 3 (x, t) 7→ ϕt(x) ∈ Rn be a dynamical
system; that is, for all x, t1, t2, we have ϕ(x, 0) = x and ϕ(ϕ(x, t1), t2) = ϕ(x, t1+

t2). If T = R then we call ϕ a continuous-time dynamical system (or a flow for
short), and if T = Z then we call it a discrete-time dynamical system.

Note that in the case of discrete time, if the dynamics is induced by a map that
is not invertible then backward orbits need not be always defined. Formally, such a
system is called a semidynamical system, but in order to simplify the terminology
and avoid some technical difficulties, this note is written for dynamical systems,
even though the theory and algorithms discussed here apply also to semidynamical
systems.

A set S is called an invariant set with respect to ϕ if ϕ(S,T) = S. The invari-
ant part of a set N , denoted InvN , is the largest, in terms of inclusion, invariant
set contained in N . The set N is called an isolating neighborhood if N is compact
and InvN ⊂ intN , where intN denotes the interior of N . S is called an isolated
invariant set if S = InvN for some isolating neighborhood N .

A Morse decomposition (see [5]) of an isolated invariant set X (note that X
may be the entire phase space) with respect to ϕ is a finite collection of disjoint
isolated invariant subsets S1, . . . , Sq of X (called Morse sets) with a strict partial
ordering ≺ on the index set {1, . . . , q} such that for every x ∈ X \ (S1 ∪ · · · ∪Sq)
and for every orbit {γt}t∈T such that γ0 = x there exist indices i ≺ j such that
γt → Si as t→∞ and γt → Sj as t→ −∞.

A rectangular set is a product of compact intervals. Given a rectangular set
R = [a1, a1 + δ1]× · · · × [an, an + δn] ⊂ Rn and integer numbers s1, . . . , sn > 0,
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we call the following set an s1 × · · · × sn uniform rectangular grid in R:

Gs1,...,sn(R) :=
{ n∏

i=1

[ai +
ji
si
δi, ai +

ji + 1

si
δi] :

ji ∈ {0, . . . , si − 1}, i ∈ {1, . . . , n}
}

The individual boxes in the grid are indexed by the n-tuples (j1, . . . , jn).

3 The Case of a Discrete-Time Dynamical System

Consider anm-parameter family of discrete-time (semi)dynamical systems in Rn:

ϕ : Rn × Rm × Z 3 (x, p, t) 7→ ϕpt (x) ∈ Rn.

Let B ⊂ Rn and P ⊂ Rm be rectangular sets.
The computational method introduced in [1] provides a finite resolution de-

scription of global dynamics exhibited by the system across the provided ranges P
of the parameters. In particular, the family of sets N1, . . . , Nq ⊂ B is constructed
with some strict partial ordering ≺ on {1, . . . , q}, such that for each p ∈ p̂, each
set Ni, i = 1, . . . , q, is an isolating neighborhood in B, and whenever a possibility
of the existence of an orbit fromNi toNj is detected, the relationNj ≺ Ni is set to
hold true. The family {Si := InvNi : i = 1, . . . , q} forms a Morse decomposition
of InvB with respect to ϕp with the ordering≺, where ϕp = ϕ(·, p, ·) indicates the
dynamical system ϕ with the parameter fixed to p. The sets Ni are constructed as
unions of closed boxes with respect to the d1 × · · · × dn uniform rectangular grid
in B. The union N1∪· · ·∪Nq contains all the chain recurrent dynamics present in
B. The collection N1, . . . , Nq is called a numerical Morse decomposition, and the
isolating neighborhoods N1, . . . , Nq are called numerical Morse sets. Note that if
Ni touches the boundary of B for some i then it is not known if Ni is an isolat-
ing neighborhood in the entire phase space X , so caution should be taken when
drawing conclusions from such a construction.

A numerical Morse decomposition can be schematically depicted as a directed
graph whose vertices correspond to the Morse sets and edges indicate possible
connecting orbits between them. In order to simplify such a representation, one
can plot the transitive reduction of this graph, as it is typically done in the presen-
tation of the results.

The Conley index, introduced by Conley [5] for flows, and generalized, e.g.,
by Mrozek [12] and Szymczak [19] to discrete semidynamical systems induced
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by continuous maps, is a topological invariant that provides information about
isolated invariant sets. Its homological version is algorithmically computable (to
certain extent) from an isolating neighborhood and an outer estimate of the map,
like those computed by the method being described. This index takes into account
the exit set of an isolating neighborhood N , that is, the part of the forward image
of N that sticks out of N , and thus reflects the stability of what N contains.

The knowledge of the Conley index of an isolating neighborhood N allows
to draw conclusions on the invariant part of N . In particular, if the index of N is
nontrivial then InvN 6= ∅. The index can also be used to prove the existence of
periodic orbits or more complicated dynamics.

The Conley index and the relation of the forward image of N with respect to
N can be used to classify each computed isolating neighborhoodN on the basis of
its stability. We say that an isolating neighborhood N is attracting if the forward
image of N is entirely contained in N . One can prove that then N contains a local
attractor, which justifies this terminology. Otherwise, if the forward image of N
is not fully contained in N , we say that N is unstable. If N has the Conley index
of a hyperbolic fixed point with d-dimensional unstable manifold then we say
that N is of the type of the corresponding point. For a typical system, it is likely
that N indeed contains an equilibrium of the expected stability, but—since the
Conley index is a purely topological tool and does not provide information about
derivatives—the dynamics in N may turn out to be much more complicated than
seen from outside (that is, from the perspective of the isolating neighborhood).
If N ⊂ Rn is of the type of a fixed point with n-dimensional unstable manifold
then we say that N is repelling. Obviously, other types of indices are possible;
for example, the index of a periodic trajectory differs from the index of any fixed
point.

Since detailed introduction to the Conley index is beyond the scope of this
note and requires certain knowledge of algebraic topology, we refer the reader to
[5, 12, 19] for more details on the Conley index, and to [6, 10, 18] and references
therein for discussion of some technical aspects of the method for the computation
of this index implemented in the software used in the software provided at [16].

One of the volatile features of the method is that the Conley index cannot be
computed in certain cases, for example, if the constructed isolating neighborhood
touches the boundary of B. This is because in a typical situation we may not
know if the chosen set B is indeed an isolating neighborhood (and in fact it is
not in many cases). Therefore, one can only be sure that Ni ⊂ B is an isolating
neighborhood if actually Ni ⊂ intB. In fact, this problem is one of the reasons
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for why the Conley index cannot be computed in many cases, and this happens
especially for the origin, which is often an isolating neighborhood but lies at the
boundary of B, e.g., in biological models, where it is normally assumed that the
size of the population is non-negative.

4 The Case of a Flow

Now consider an m-parameter family of flows on Rn:

ϕ : Rn × Rm × R 3 (x, p, t) 7→ ϕpt (x) ∈ Rn.

Let B ⊂ Rn and P ⊂ Rm be rectangular sets.
In order to apply the method for automatic analysis of global dynamics to a

continuous-time dynamical system (a flow) induced by an ODE, it is natural to
consider a time-τ map for some fixed τ > 0, and to conduct the computations
for the discrete-time dynamical system induced by this map. Namely, let τ > 0,
and consider the m-parameter discrete-time dynamical system ϕτ obtained by
restriction ofϕ to Rn×Rm×τZ. Let d1, . . . , dn and s1, . . . , sm be positive integers.
For each parameter box p̂ ⊂ P in the s1×· · ·× sm uniform rectangular grid in P ,
and for each box b in the d1× · · · × dn uniform rectangular grid in B, one can use
the CAPD software library [4] to compute a rigorous outer estimate for ϕ(b, p̂, τ).
In this way, we apply the computational method introduced in [1] to ϕτ .

The following theorem justifies this approach, as it shows that the results ob-
tained from the computations conducted for the time-τ map are valid for the flow,
too.

Theorem 4.1 (see [7, §5.2]). Let ϕ be a flow on Rn. Let τ > 0. Let B ⊂ Rn

be an isolating neighborhood with respect to ϕτ . Assume that N1, . . . , Nk ⊂ B

are some isolating neighborhoods for ϕτ , with pairwise disjoint interiors. Assume
that M := {Mi := InvNi | i = 1, . . . , k} is a Morse decomposition of Inv(B,ϕτ )
with respect to ϕτ . Then N1, . . . , Nk are isolating neighborhoods for ϕ, and M is
a Morse decomposition of Inv(B,ϕ) with respect to ϕ. Moreover, if there exists
a connecting orbit in B for ϕ between some of the Morse sets then there exists a
connecting orbit in B for ϕτ between the same Morse sets.

Note that in this theorem there is no one-to-one correspondence between ob-
jects computed for the time-τ map and the flow, it only says about one direction of
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implication. In particular, an isolating neigborhood for the flow need not be an iso-
lating neighborhood for the time-τ map. Moreover, there might exist a connecting
orbit for ϕτ in B with no corresponding connecting orbit for ϕ in B.

We remark that the Conley indices with respect to the flow ϕ can be instantly
obtained from those computed when considering ϕτ .

Choosing an optimal value of τ > 0 is not a trivial task. In fact, in our ap-
proach, we use a heuristic method which chooses a supposedly good τ > 0 by
trial and error: τ is initially chosen quite arbitrarily, and then increased if possi-
ble or decreased if it yields too high overestimates in the computation of outer
enclosures of the images of grid elements by ϕτ .

5 Application of the Method to a Specific System

The input to the rigorous set-oriented numerical method applied to a specific dy-
namical system consists of the data listed below.

(I1) A procedure for computing outer bounds for images of arbitrary boxes
(cartesian products of intervals) under the dynamical system for all the parameters
in the ranges provided at the time of the computation. If a formula for the map is
known (in the case of a discrete-time dynamical system) then this can be easily
done by means of using simple interval arithmetic. If an ODE that generates the
flow is known and is given by an elementary formula then one can use a wrapper
provided in the software which requires providing the formula for the right-hand
side of the ODE.

(I2) The ranges of the parameters that are varying in the computations. The
cartesian product of these ranges will be further denoted by P .

(I3) The phase space bounding box that contains all the asymptotic dynamics
of our interest.

(I4) The resolutions in the parameter space and in the phase space, which are
given by the numbers of subintervals into which each of the parameter intervals
is going to be subdivided uniformly, and also a subdivision depth d > 0 for the
phase space. Note that in the software, the phase space is subdivided uniformly
into 2d subintervals in each direction.

In addition to this initial data, there are also several technical parameters, such
as a suggestion for τ in case of working with an ODE. All of these technicalities
can be easily found in the software available at [16].

The computations can be run at a computer cluster in a convenient way, using
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a flexible dynamic parallelization scheme introduced in [15], which is built into
the software.

The output of the computations consists of the following information:
(O1) Classes of parameters for which the qualitative global dynamics is equiv-

alent. These classes are given as subsets of P , built of the boxes into which P was
subdivided.

(O2) For each parameter box, selected information about the computed nu-
merical Morse decomposition: the number of the sets, their sizes (in terms of
the number of boxes), their Conley indices (whenever it was possible to compute
them), and information on the detected possible connecting orbits.

(O3) [optionally] A 2D projection of the phase space portrait of the sets of
which the numerical Morse decomposition is composed. The projection is done
onto two preselected variables. This form of output is optional, because the amount
of the data can be overwhelming.
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